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ELABORATION OF A RANKING OF HOTELS

The aim of this project is to develop, through some transparent evaluation models, a ranking of luxury hotels in six European
countries. The ranking obtained will be compared to a ranking of luxury hotels given by the website www.booking.com. The data,
coming from https://www.kaggle.com, are available on http://www.lamsade.dauphine.fr/~mayag/teaching.
html (see Luxury Hotels Luxe.xlsx file).

For each hotel, we have the following information:

? Name: the name of the luxury hotel;

? Total of negative words (criterion 1): the total number of negative words in all the comments given by the clients of this hotel.
(criterion to be minimized);

? Total of positive words (criterion 2): the total number of positive words in all the comments given by the clients of this hotel.
(criterion to be maximized);

? Average given by Reviewers (criterion 3): the average score (/10) given by the clients of this hotels in their comments. (criterion
to be maximized);

? Total of Reviews (criterion 4): the total number of comments given by the clients of this hotel. (criterion to be maximized);

? Booking’s note: A global score (/10) given the website www.booking.com to this hotel.

The elaboration of a ranking of hotels can be viewed as an elaboration of a MultiCriteria Decision Aid (MCDA) model. We suggest
to implement the functions below as generic as possible (for instance, from an Excel file containing a set of n criteria and a set of m
alternatives).

1 A ranking from a simple weighted sum model
1. Build the function normalizedpeformancematrix1 and normalizedpeformancematrix2 returning an excel file

(or csv file) containing the normalized performance matrix of the problem, by using respectively the normalization formula (1)
and (2): 

ui(hi) =
hi − Li
Ui − Li

if i is a criterion to be maximized (criteria 2, 3 and 4 in our example)

ui(hi) =
hi − Ui
Li − Ui

if i is a criterion to be minimized (critrion 1 in our example)

(1)


ui(hi) =

hi
Ui

if i is a criterion to be maximized (criteria 2, 3 and 4 in our example)

ui(hi) = 1− hi
Ui

if i is a criterion to be minimized (critrion 1 in our example)

(2)

2. Build a function RankingWeightSum which returns, in an Excel (or csv) file, a ranking of luxury hotels by using a weighted
sum model. The two formulas (1) and (2) have to be used.

Indication: Weights can be added manually in the Excel file containing the data of the luxury hotels.

3. Test your decision model by using the following weights and compare the results obtained with the ranking provided (see column
Booking score) by www.booking.com (for instance, you can use the kendall rank correlation 1 between the two rankings):

1https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
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> (w1, w2, w3, w4) = (1/4; 1/4; 1/4; 1/4)

> (w1, w2, w3, w4) = (0.4; 0.2; 0.2; 0.2)

> (w1, w2, w3, w4) = (0.1; 0.3; 0.4; 0.3)

2 A ranking from a simple sorting (ordered classification) model
In this section, we sort the luxury hotels in three ordered categories (“Excellent”, “Very Good” and “Good”) by using a simple sorting
MCDA method called MR-Sort (for more detail about this MCDA rule, see the Appendix below).

1. Build the functions PessimisticmajoritySorting and OptimisticmajoritySorting, respectively based on the
Pessimistic and Optimistic version of MR-sort rule, which return an Excel (or csv) file containing the classified luxury hotels in
the previous three categories.

Indication: Weights, limiting profiles and threshold can be added manually in the Excel file containing the data of the luxury
hotels.

2. Test your decision model (in a pessimistic and optimistic way) by using the following parameters:

> Weights: (w1, w2, w3, w4) = (0.4; 0.2; 0.2; 0.2)

> Threshold: λ = 0.6;

> Limiting profile between “Excellent” and “Very Good”: (500; 5000; 9; 500);

> Limiting profile between “Very Good” and “Good”: (1000; 2500; 8; 300);

3 Modeling interactions
1. Build a function RankingChoquetIntegral which returns, in an Excel (or csv) file, a ranking of luxury hotels by using a

2-additive Choquet integral. The two formulas (1) and (2) have to be used. You will need to implement a function testing the
2-additive monotonicity conditions when values on singletons and pairs of criteria are given.

2. Test your decision model by using the following values of the 2-additive capacity and compare the results obtained with the
ranking provided (see column Booking score) by www.booking.com:

(a) µ1 = 0.3, µ2 = 0, µ3 = 0, µ4 = 0, µ12 = 0.8, µ13 = 0.3, µ14 = 0.3, µ23 = 0, µ24 = 0, µ34 = 0.2;

(b) µ1 = 0.3, µ2 = 0.1, µ3 = 0.1, µ4 = 0.2, µ12 = 0.6, µ13 = 0.4, µ14 = 0.5, µ23 = 0.3, µ24 = 0.3, µ34 = 0.3.

4 Preference elicitation
1. Could you explain the top 20 of the Booking ranking (by giving a set of parameters compatible to these preferences)?

2. Is it possible to find a set of parameters (for the weighted sum or the 2-additive Choquet integral) such that the last five hotels in
the Booking ranking correspond to the best five hotels in your own ranking?
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A ELECTRE TRI methods

A.1 Elaboration of the outranking relation Sλ
Let A be a set of alternatives evaluated on n real-valued criteria gi : A→ R, i ∈ N = {1, . . . , n}. We denote by gi(a) the performance

of the alternative a on criterion i. A nonnegative weight wi is also assigned to each criterion i (w.l.o.g. we suppose
n∑
i=1

wi = 1).

We associate with each criterion i ∈ N , a nonnegative preference threshold pi ≥ 0. If the value gi(a) − gi(b) is positive but less
than pi, it is supposed that this difference is not significant, given the way gi has been built. Hence, on this criterion, the two alternatives
should be considered indifferent.

Using this information, we define on each criterion i ∈ N the partial concordance index ci : A×A→ [0, 1] as follows:

ci(a, b) =

{
1 if gi(b)− gi(a) ≤ pi
0 if gi(b)− gi(a) > pi

(3)

The valued relations ci are aggregated to a single concordance index c : A×A→ R by using the following Equation:

c(a, b) =

n∑
i=1

wici(a, b) (4)

The binary relation on A called outranking relation is defined by:

a Sλ b iff c(a, b) ≥ λ (5)

where λ ∈ [0, 1] is a cutting level (usually called a threshold and taken above
1

2
).

Interpretation: An alternative a ∈ A outranks an alternative b ∈ A if it can be considered at “least as good” as the latter (i.e., a
is not worse than b), given the values (performances) of a and b at the n criteria. If a is not worse than b in every criterion, then it is
obvious that a Sλ b. However, if there are some criteria where a is worse than b, then a may outrank b or not, depending on the relative
importance of those criteria and the differences in the evaluations (small differences might be ignored).

From Sλ we derive the following three binary relations:

+ “Strictly better than” relation:
a Pλ b iff [a Sλ b and not(b Sλ a)] (6)

+ “Indifferent to” relation:
a Pλ b iff [a Sλ b and (b Sλ a)] (7)

+ “Incomparable to” relation:
a Pλ b iff [not(a Sλ b) and not(b Sλ a)] (8)

A.2 ELECTRE TRI (also called ELECTRE TRI B)
Let us consider r ordered categories C1, C2, . . . , Cr, C1 is the worst one and Cr is the best one. The category Ck is modeled by using
limiting profiles. The lower limiting profile of Ck is πk. The upper limiting profile of Ck is πk+1. We suppose that the limiting profiles
are such that πk+1 strictly dominates πk 2. The profile π1 (respectively πr+1) is taken low (respectively high). It will be convenient to
suppose that πk ∈ A, for each k = 2, 3, . . . , r, while π1, πr+1 /∈ A. With this convention we have

For all a ∈ A, a Pλ π1 and πr+1 Pλ a. (9)

ELECTRE TRI ([9], chap. 6) renamed ELECTRE TRI-B by Almeida-Dias et al. [4] is a MultiCriteria Decision Aid method using
limiting profiles. It has two versions called “pessimistic” and “optimistic” in [9]. In [8] the name “pseudo-conjunctive” is used for the
“pessimistic” version and “pseudo-disjunctive” for the “optimistic” version. These two versions are defined as follows:

2An alternative a dominates an alternative b, we note a ∆ b iff [for all i ∈ N, gi(a)− gi(b) ≥ 0]. a strictly dominates b if [a ∆ b and not(b ∆ a)]
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Définition 1 (Pessimistic version: ETRI-B-pc). Decrease k from r + 1 until the first value k such that a Sλ πk. Assign alternative a to
Ck.

ETRI-B-pc assigns an alternative a to the unique category Ck such that a is at least as good as to the lower limiting profile of this
category and is not at least as good as its upper limiting profile (the relation “at least as good as” being Sλ).

Définition 2 (Optimistic version: ETRI-B-pd). Increase k from 1 until the first value k such that πk Pλ a. Assign alternative a to Ck−1.

ETRI-B-pd assigns an alternative a to the category Ck such that the upper limiting profile of this category is better than a and the
lower limiting profile of this category is not better than a (the relation “better than” being Pλ).

Remarque 1. Roy and Bouyssou ([9],chap.6,pp.393-395) have shown that if a ∈ A is assigned to the category Ck by the pessimistic
version and to the category Cl by the Optimistic version, then k ≤ l.

A.3 Majority Rule sorting procedure (MR-Sort)
MR-Sort is a simplified version of the ELECTRE TRI sorting model directly inspired by the work of Bouyssou and Marchant [1, 2]
who provide an axiomatic characterization of non-compensatory sorting methods. The general principle of MR-Sort (without veto) is
to assign alternatives by comparing their performances to those of profiles delimiting the categories. An alternative is assigned to a
category “above” a profile if and only if it is at least as good as the profile on a (weighted) majority of criteria.

The condition for an alternative a ∈ A to be assigned to a category Ck is expressed as follows:∑
i:gi(a)≥gi(πk−1)

wi ≥ λ and
∑

i:gi(a)≥gi(πk)

wi < λ (10)

The MR-Sort assignment rule described above involves r × n + 1 parameters, i.e., n weights, (r − 1) × n profiles evaluations and 1
majority threshold.

As demonstrated in [6], the problem of learning the parameters of a MR-Sort model on the basis of assignment examples can be
formulated as a mixed integer linear program (MILP) but only instances of modest size can be solved in reasonable computing times.
The MILP proposed in [6] contains m × (2n + 1) binary variables, with n, the number of criteria, and m, the number of alternatives.
A problem involving 1000 alternatives, 10 criteria and 5 categories requires 21000 binary variables. For a similar program in [3], it is
mentioned that problems with less than 400 binary variables can be solved within 90 minutes.

In [5] a genetic algorithm was proposed to learn the parameters of an ELECTRE TRI model. This algorithm could be transposed for
learning the parameters of a MR-Sort model. However, it is well known in [7] that genetic algorithms which take the structure of the
problem into account to perform crossovers and mutations give better results. It is not the case of the genetic algorithm proposed in [5]
since the authors? definitions of crossover and mutation operators are standard.

Learning only the weights and the majority threshold of an MR-Sort model on the basis of assignment examples can be done using
an ordinary linear program (without binary or integer variables). On the contrary, learning profiles evaluations is not possible by linear
programming without binary variables. Taking these observations into account, [10] proposes an algorithm that takes advantage of the
ease of learning the weights and the majority threshold by a linear program and adjusts the profiles by means of a dedicated heuristic.
This algorithm uses the following components:

1. a heuristic for initializing the profiles;

2. a linear program learning the weights and the majority threshold, given the profiles;

3. a dedicated heuristic adjusting the profiles, given weights and a majority threshold.

References
[1] D. Bouyssou and T. Marchant. An axiomatic approach to noncompensatory scoring methods in MCDM, I: The case of two

categories. Eur. J. of Operational Research, 178:217–245, 2007.

[2] D. Bouyssou and Th. Marchant. An axiomatic approach to noncompensatory scoring methods in MCDM, II: More than two
categories. Eur. J. of Operational Research, 178:246–276, 2007.

4



[3] O. Cailloux, P. Meyer, and V. Mousseau. Eliciting electre tri category limits for a group of decision makers. European Journal of
Operational Research, 223(1):133–140, 2012.

[4] J. Almeida Dias, J. Rui Figueira, and B. Roy. Electre tri-c: A multiple criteria sorting method based on characteristic reference
actions. European Journal of Operational Research, 204(3):565–580, 2010.

[5] M. Doumpos, Y. Marinakis, M. Marinaki, and C. Zopounidis. An evolutionary approach to construction of outranking models for
multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2):496–505,
2009.

[6] A. Leroy, V. Mousseau, and M. Pirlot. Learning the parameters of a multiple criteria sorting method. In Ronen I. Brafman, Fred S.
Roberts, and Alexis Tsoukiàs, editors, Algorithmic Decision Theory - Second International Conference, ADT 2011, Piscataway,
NJ, USA, October 26-28, 2011. Proceedings, volume 6992 of Lecture Notes in Computer Science, pages 219–233. Springer, 2011.

[7] M. Pirlot. General local search methods. European Journal of Operational Research, 92(3):493–511, 1996.

[8] B. Roy. Présentation et interprétation de la méthode ELECTRE TRI pour affecter des zones dans des catégories de risque (p. 25).
Document du LAMSADE, (124), 2002.

[9] B. Roy and D. Bouyssou. Aide multicritère à la décision : Méthodes et Cas. Economica, 1993.

[10] O. Sobrie, V. Mousseau, and M. Pirlot. Learning a majority rule model from large sets of assignment examples. In Patrice Perny,
Marc Pirlot, and Alexis Tsoukiàs, editors, Algorithmic Decision Theory - Third International Conference, ADT 2013, Bruxelles,
Belgium, November 12-14, 2013, Proceedings, volume 8176 of Lecture Notes in Computer Science, pages 336–350. Springer,
2013.

5


	A ranking from a simple weighted sum model
	A ranking from a simple sorting (ordered classification) model
	Modeling interactions
	Preference elicitation
	ELECTRE TRI methods
	Elaboration of the outranking relation S
	ELECTRE TRI (also called ELECTRE TRI B)
	Majority Rule sorting procedure (MR-Sort)


